II Semester M.Sc. Examination, June 2016 (CBCS) MATHEMATICS M203T : Topology - II

Time: 3 Hours Max. Marks: 70

Instructions i) Answer any five full questions.

ii) All questions carry equal marks.

- 1 a) Show that a closed subset of a compact space is compact.
 - b) Define:
 - i) A countable compact space
 - Sequentially compact space.

Prove that every sequentially compact space is countably compact. Is the converse true ? Explain.

 c) If f: X → Y is a continuous mapping of a locally compact space (X, 7) onto a topological space (Y, 7*), then prove that (Y, 7*) is locally compact.

(3+7+4)

- a) Prove that every second axiom space is a first axiom space and hence show that converse is false.
 - b) Prove that Lindeloff property is topological.
 - c) Prove that a metric space (X, d) is countably compact iff every countable open cover has a finite subcover.

(6+3+5)

- a) Define the projections on the product space X x Y and show that they are continuous and open.
 - b) Show that X x Y is second countable iff X and Y are second countable.
 - c) Prove that if A is closed in (X, 7) and B is closed in (Y, 7) then A x B is closed in the product topology and conversely.

(4+4+6)

- 4. a) Define:
 - i) To-space
 - ii) T,-space.

Give an example of a To-space which is not a To-space.

P.T.O.

- b) Prove that in a To-space the closure of distinct points are distinct and
- c) Show that a point 'x' in a T₁-space (X, 7) is a limit point of a subset A of X if and only if every open set containing x contains infinitely many distinct points

(4+4+6)

- a) Define a T₃-space. Show that a metric space is T₃-space.
 - b) Prove that every T₃-space is a T₂-space. Is the converse true ? Justify.
 - c) Define a Tychnoff space. Show that a Tychnoff space is a regular space.

(5+4+5)

- 6. a) Define a normal space. Show that a T2-space need not be normal
 - b) Show that a regular Lindeloff space is normal.

(4+10)

- 7. a) State and prove the Urysohn's lemma.
 - b) Show that a normal space is regular it and only it is completely regular.

(10+4)

- 8 a) Define complete normal space. Prove that a space is completely normal iff
 - b) Prove that every metric space is normal.
 - c) Define para compact space. Prove that every para compact space is

(6+4+4)